LECTURE

CHE 415 Chemical Engineering Thermodynamics II

Department of Chemical Engineering College of Science and Engineering Landmark University, Omu-Aran, Kwara State.

Phase Equilibrium and Fugacity

Learning Objectives for today's lecture

- At the end of this week's lecture, you should be able to:
 - Derive expression for fugacity and fugacity coefficient
 - Application of fugacity to phase equilibria and their calculations.

6-2

6-3

FUGACITY, FUGACITY COEFFICIENT

□ From the Gibbs free energy differential,

$$dG = VdP - SdT$$
 6-1

- Applied to 1 mole of pure fluid i at constant T, this equation becomes,
- $\Box \qquad dG_i = V_i dP \qquad (const. T)$ $\Box For an ideal gas, V_i = RT/P$
- $\Box \text{ Thus,} \qquad \qquad dG_i = RT \frac{dP}{P}$
- \Box or $dG_i = RT dlnP$
- Eqn.6-3 can be made universally valid by replacing P with a new function known as fugacity, f
- Eqn.6-3 becomes,

 \square

 $dG_i = RT dln f_i$ (const. T)

- const. T) 6-4
- Where f_i, called the fugacity of pure i, is a property of I with the units of pressure.
- □ For the special case of an ideal gas,

 $RT dln f_i = RTdlnP$

Integration gives,

 $\ln f_i = \ln P + \ln C$

FUGACITY, FUGACITY COEFFICIENT

South States

FUGACITY COEFFICIENT

The fugacity coefficient is defined as the ratio of the fugacity of a material to its pressure. For a pure substance,

$$\varphi_i = \frac{f_i}{P} \tag{6-7}$$

□ For a component in solution,

- $\Box \qquad \qquad \widehat{\varphi_i} = \frac{\widehat{f_i}}{x_i P} \qquad \qquad 6-8$
- $\Box \varphi_i$ is the fugacity coefficient and is dimensionless.
- □ Values of φ_i and $\widehat{\varphi_i}$ are readily calculated from PVT data

Derivation of f_i and φ_i .

From eqn.6-4

 $dG_i = RT dln f_i$ (const. T)

□ At constant T and composition (x), 1 mole of solution, the equation

$$d(nG) = -(nS)dT + (nV)dP + \sum [\mu_i]dn_i$$

- $\Box \text{ Becomes} \qquad dG_i = V_i dP$
- □ Combination of eqns.6-4 and 6-9 gives,

6-9

(const. T,x)

A logarithmic differentiation of 6-7 gives

CHE 415 – CHEMICAL ENGINEERING THERMODYNAMICS II

RT dln f_i = V_idP

FUGACITY COEFFICIENT

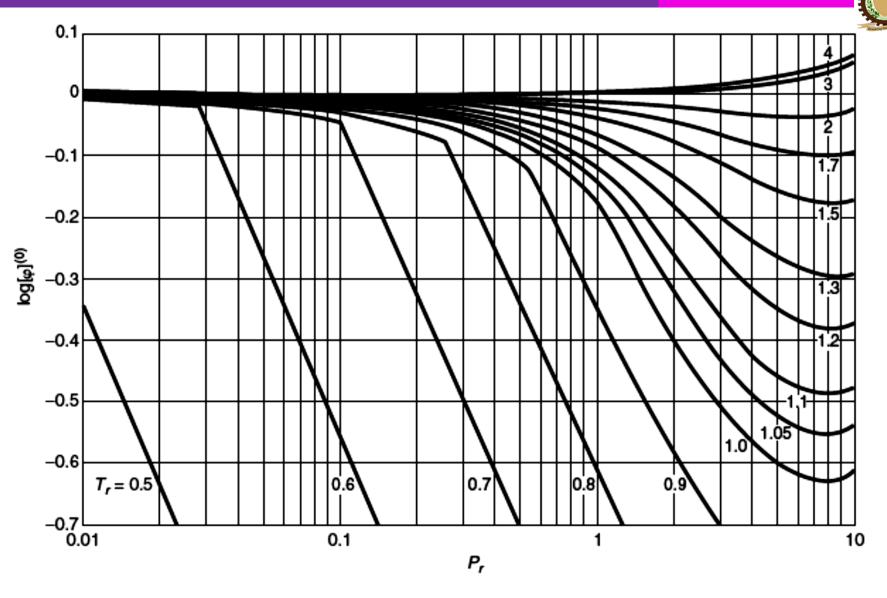
A logarithmic differentiation of 6-7 gives $dln f_i = dln \varphi_i + dln P$ $= dln \varphi_i + \frac{dP}{R}$ Substituting into eqn. 6-10 gives $dln\varphi_i = \frac{PV_i}{PT} \frac{dP}{P} - \frac{dP}{P}$ (const. T,x) 6-11 $Z_i = \frac{PV_i}{PT}$, we have Since, $dln\varphi_i = (Zi - 1)\frac{aP}{P}$ (const. T,x) 6-12 Integrating between P = 0, where φ_i = 1 and P gives $\ln \varphi_i = \int_0^P (Zi - 1) \frac{dP}{R}$ 6-13 Since $f_i = \varphi_i P$, the corresponding expression for $\ln f_i$ is $\ln f_{i} = \ln P + \int_{0}^{P} (Zi - 1) \frac{dP}{P} \qquad \text{(const. T,x)}$ 6-14 Analogous equations to 6-13 and 6-14 for which V rather than P is the variable of integration are easily derived. They are $\ln \varphi_i = (Z_i - 1) - \ln Z_i - \int_0^V (Z_i - 1) \frac{dV_i}{W_i}$ 6-15 $\ln f_{i} = \ln \frac{RT}{V} + (Z_{i} - 1) - \int_{0}^{V} (Zi - 1) \frac{dV_{i}}{V}$ 6-16 CHE 415 – CHEMICAL ENGINEERING THERMODYNAMICS II

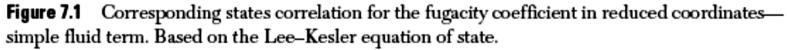
FUGACITY COEFFICIENT

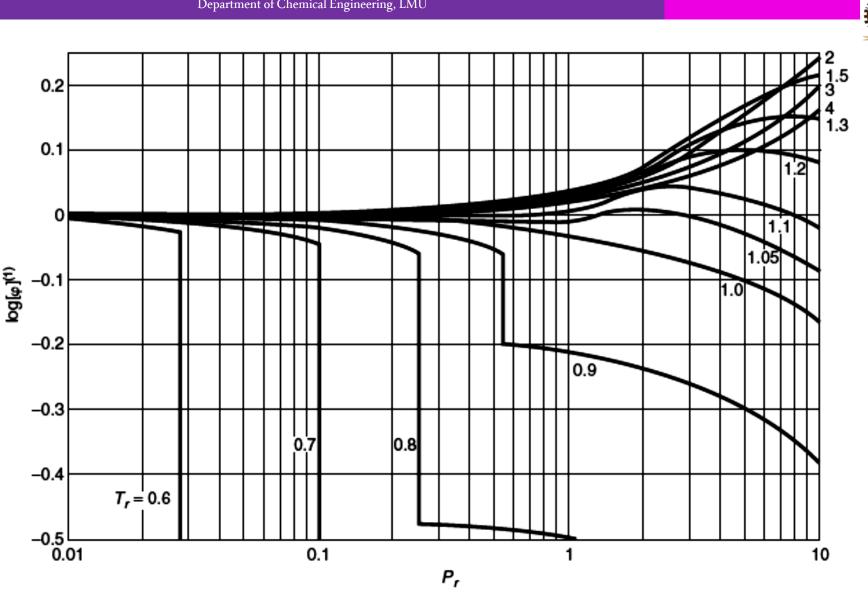
For ideal gases, Z = 1, hence, $\varphi_i = \varphi = 1$ $f_i = f = P$ and The analogous equation for a component i of an ideal gas mixture (solution) are $\widehat{\varphi_i} = \varphi = 1$ $\hat{f}_i = y_i P$ and 6-17 □ Where yi is the mole fraction of component I in a gas phase. Since the residual volume is related to the compressibility factor by the expression $\Delta V_i = \frac{RT}{R} (1 - Z_i)$ 6-18 Hence eqn.6-13 becomes, $\ln \varphi_{i} = -\frac{1}{RT} \int_{0}^{P} (\frac{RT}{R} - Vi) dP$ $= -\frac{1}{DT} \int_{0}^{P} \Delta V_{i} dP$ (const. T) 6-19 Also the expression $\ln \widehat{\varphi_i} = \int_0^P (\widehat{Z}_i - 1) \frac{dP}{R}$ (const. T,x) is valid 6-20

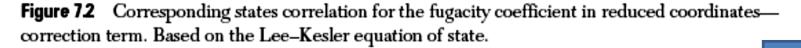
FUGACITY COEFFICIENT

- \Box And $\beta^1 = 0.139 \frac{0.172}{T_r^{4.2}}$
- $\Box \text{ And also } \ln \varphi = ln\varphi^0 + \omega ln\varphi^1 \text{ or } \varphi = \varphi^0 \varphi^{1\omega}$
- □ Where $\varphi^0, \varphi^1, \beta^0, \omega$ and β^1 are functions of (P_r,T_r) found in literature (see Lee-Kesler chart).
- □ Practice Example.
- □ Determine the values of φ and *f* for n-butane gas at 460K and 15atm by the generalized correlation for fugacity coefficient. (P_C = 37.5atm, T_C = 425.2K, ω = 0.193)









SOLUTION

🛛 We k	know that
	$\ln \varphi = \frac{P_r}{T} \left(\beta^0 + \omega \beta^1\right) \qquad (\text{const. T,x})$
And	$\ln \varphi = \frac{P_r}{T_r} (\beta^0 + \omega \beta^1) $ (const. T,x) $P_r = \frac{P}{P_C} = \frac{{}^{r_{15}}}{{}^{37.5}} = 0.40$
	$T_r = \frac{T}{T_c} = \frac{400}{425.5} = 1.08$
	$\beta^0 = 0.083 - \frac{0.422}{1.08^{1.6}} = -0.290$
And	$\beta^1 = 0.139 - \frac{0.172}{1.08^{4.2}} = 0.014$
Subs	stituting in the equation above
	$\ln \varphi = \frac{0.40}{1.08} (-0.290 + (0.193)(0.014))$
	= -0.1064
And	$\varphi = e^{-0.1064}$
	= 0.899
Sinc	e $f = \varphi P$
	= 0.899 x 15
	= 13.49 atm

NAME

EQUALITY OF FUGACITY AS A CRITERION OF PHASE EQUILIBRIUM

- □ The concept of fugacity as the criterion for chemical equilibria is as that of using chemical potential. To derive this relationship for fugacity, we begin by equating the chemical potentials of phases α and β : $\mu q = \mu \beta$ 6-22
- □ Also fugacity as defined by G.N. Lewis is given by the relation

$$\mu_i - \mu_i^o \equiv RT \ln \left[\frac{\hat{f}_i}{\hat{f}_i^o}\right]$$
 6-23

□ Combining eqn.6-22 and 6-23 yields,

$$\mu_{i}^{\alpha,o} + RT \ln \left[\frac{\hat{f}_{i}^{\alpha}}{\hat{f}_{i}^{\alpha,o}}\right] = \mu_{i}^{\beta,o} + RT \ln \left[\frac{\hat{f}_{i}^{\beta}}{\hat{f}_{i}^{\beta,o}}\right]$$

Applying a mathematical relationship to the quotient in the logarithms and rearranging gives:

$$\mu_{i}^{\alpha,\rho} - \mu_{i}^{\beta,\rho} = RT \ln\left[\frac{\hat{f}_{i}^{\alpha,\rho}}{\hat{f}_{i}^{\beta,\rho}}\right] + RT \ln\left[\frac{\hat{f}_{i}^{\beta}}{\hat{f}_{i}^{\alpha}}\right]$$

EQUALITY OF FUGACITY AS A CRITERION OF PHASE EQUILIBRIUM

The first three terms are just a restatement of Eqn.6-22; hence the remaining term must be equal to zero, that is,

$$0 = RT \ln \left[\frac{\hat{f}_i^{\beta}}{\hat{f}_i^{\alpha}}\right]$$

Or Or

$$= \hat{f}_i^{\beta}$$
 6-24

Eqn.6-24 forms the criterion for chemical equilibrium in terms of fugacity. It is just as simple as that for chemical potential.

THANK YOU FOR YOUR **ATTENTION! ANY QUESTIONS?**